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Introduction

▶ Production function (PF) estimation:

y = x ′β + ω + ε

Firms choose inputs x after observing state ω (Marschak and Andrews, 1944).

▶ Control function approach (CFA): Proxying ω with a control function allows to
estimate β with GMM (Ackerberg et al., 2015).

▶ Weak identification: When proxies have low explanatory power (measurement
error) Jacobian near-singular, leading to biased, non-normal estimates and invalid
standard inference.
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This Paper

Contributions

1. Identification with noisy proxy feasible (under restrictions)

2. Weak proxies (small signal/noise) can cause biased estimates with non-normal
distributions.

3. Adapt weak identification-robust methods: bootstrap pre-tests for proxy strength
(Angelini et al., 2024) and ID-robust confidence sets (Stock and Wright, 2000).
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Related Literature
Production-function identification

▶ Olley and Pakes (1996) (OP), Levinsohn and Petrin (2003) (LP), Ackerberg et al.
(2015) (ACF) discuss identification using (strong) proxies; Gandhi et al. (2020)
(GNR) discuss non-identification (in nonparametric models)

▶ We consider sources for weak identification

Weak identification in structural models

▶ DSGE (Canova & Sala 2009), NK Phillips curve (Mavroeidis, Plagborg-Møller &
Stock 2013), BLP demand (Armstrong 2016)

▶ We extend this list with structural production-function estimation

Empirical work
▶ Empirical applications using control function estimator

▶ Trade: Pavcnik (2002); Topalova (2010); Fernandes (2007)
▶ Market power: De Loecker et al. (2020); Autor et al. (2020)
▶ Finance: Gopinath et al. (2017); Gourinchas et al. (2020)

▶ We give guidance on model specification and add to toolbox
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Structure of Presentation

▶ Identification Analysis
▶ Present identification strategy of CFA
▶ Weak proxies

▶ Methods
▶ Bootstrap pretest
▶ AR–GMM

▶ Monte Carlo simulation

▶ Empirical Analysis

▶ Conclusion
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The Control Function Approach
▶ General PF specification for firm i at period t:

yit = x ′itβ + ωit + εit , E[εit |Iit ] = 0 (1)

▶ Markov process for state variable

ωit = ρωit−1 + ξit , E[ξit | Iit−1] = 0 (2)

▶ Demand function h of intermediate inputs m

mit = h(ωit , xit) + νit (3)

▶ strictly monotonic in ωit

▶ allow for unobservable νit (unlike OP, LP, ACF)
▶ Control function

ωit = h−1(mit − νit , xit)

= Ψ(mit , xit) + ηit , E[ηit |xit ,mit ] = 0

▶ Ψ(m, x) = E [ωit | mit = m, xit = x ]
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Identification and Estimation
▶ Proxy equation (first stage)

yit = x ′itβ +Ψ(mit , xit)︸ ︷︷ ︸
Φ(mit ,xit)

+ηit + εit

▶ Structural equation (second stage)

yit = x ′itβ + ρ
(
Φ(mit−1, xit−1)− x ′it−1β

)
− ρηit−1 + ξit + εit

▶ Combining both stages allows estimation in one go

yit = x ′itβ + ρ (yit−1 − x ′it−1β)− ρεit−1 + ξit + εit

E[ξit + εit − ρεit−1|Iit−1] = 0

zit = {xit−1,mit−1,...} ∈ Iit−1

▶ Straightforward to get CUE (Hansen et al., 1996) for ID-robust inference methods
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Nonidentification & Weak Proxies
Identification in GMM
▶ Moment conditions of second stage

E[fit(β0, ρ0)] = E
[
zit
(
yit − x ′itβ − ρ0 (Φit−1 − x ′it−1β0)

)]
= 0

▶ Identification requires full-rank Jacobian

J :=
(
Jβ

... Jρ

)
=

(
E
[
zit(x

′
it − ρ0x

′
it−1)

] ... E[zit(Φit−1 − x ′it−1β0︸ ︷︷ ︸
Ψit−1

)
])

Nonidentification
▶ Assume linear control function Ψit−1 = γmmit−1 + x ′it−1γx
▶ J is rank-deficient, if

▶ xit and xit−1 collinear
▶ γm → 0

Weak proxies
▶ Small γm (weak proxies) lead to near rank-deficiency ⇒ Weak identification
▶ Example: classical measurement error in proxies attenuates γm
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Strong ID: Standard Asymptotics

Standard Setup (Hansen, 1982)

▶ Parameter vector θ = (β⊤, ρ)⊤

▶ Sample moments

fn(θ) =
1

n(T − 1)

n∑
i=1

T∑
t=2

fit(θ)

▶ Estimator and Objective

θ̂n = argmin
θ∈Θ

Qn(θ), Qn(θ) = n fn(θ)
⊤Wnfn(θ)

▶ Under standard Assumptions, if Jacobian full rank

▶ Consistency: θ̂n
p−→ θ0

▶ Asymptotic normality:
√
n (θ̂n − θ0)

d−→ N
(
0, Vθ

)
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Weak ID: Nonstandard Asymptotics
Partially identified Setup (Stock and Wright, 2000)
▶ Nearly singular Jacobian in β:

Jβ(θ0) = Πn =
C√
n
, C full column rank,

with columns of C linearly independent of Jρ(θ0) = r ̸= 0.
▶ ρ̂n is

√
n-consistent

▶ Joint CLT
√
n

(
fn(θ0)
ρ̂n − ρ0

)
d−→

(
ψf

ψρ

)
Limit process of sample moments

√
nfn(β, ρ̂n)

d−→ ψf + C (β − β0) + rψρ + Op(1)

Implications
▶ Qn(β, ρ̂n) = Op(1) for β ̸= β0
▶ No

√
n–consistency and asymptotic non-normality for β̂n
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Bootstrap pre-test for proxy relevance (Angelini et al., 2024)

▶ H0: Proxies (and instruments) are strong

▶ Denote full-sample estimate θ̂n with variance Vθ, and BS estimate θ̂∗n

▶ Statistic: Γ∗n =
√
n V̂

−1/2
θ

(
θ̂∗n − θ̂n

)
▶ Asymptotically Gaussian only under strong proxies:

Γ∗n
d−→H0 N (0, I )

▶ Testing Procedure
▶ Draw BS samples and compute Γ∗n,b for each
▶ Test (multivariate) normality of {Γ∗n,b}Bb=1
▶ If reject normality: treat proxies/instruments as weak

▶ Key features
▶ Post-test inference unaffected
▶ Simplicity: only requires θ̂∗n and V̂θ (straightforward with CUE)
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AR-GMM (Stock and Wright, 2000)

▶ H0 : θ0 = θ∗

▶ Statistic: S(θ∗) = nfn(θ
∗)′V̂ff (θ

∗)−1fn(θ
∗)

▶ Asymptotically chi-squared

S(θ∗)
d−→H0 χ

2
dθ

▶ Confidence set by inversion

CS(α) = {θ∗ : S(θ∗) ≤ χ2
df
(1− α)} (4)

▶ Key features
▶ Confidence sets remain valid even under weak identification
▶ Not most powerful, since also tests against overidentifying moment conditions
▶ More powerful robust tests exist, e.g. Kleibergen (2002), Moreira (2003)
▶ Easily implementable once we have CUE
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Subset-inference (Kleibergen and Mavroeidis, 2009)

▶ Parameter partition: θ = (θ1, θ2)

▶ Subset null hypothesis H0 : θ1 = θ∗1
▶ Restricted CUE

θ̂2(θ
∗
1) := argmin

θ2
S(θ1, θ2)

∣∣
θ1=θ∗1

▶ Asymptotics: Limiting distribution is stochastically dominated by chi-squared
(equality when θ2 is well identified)

S(θ∗1, θ̂2(θ
∗
1)) ⪯d

H0
χ2
df −dθ2

▶ Confidence set

CS(α) = {θ1 : S(θ1, θ̂2(θ1)) ≤ χ2
df −dθ2

(1− α)}.
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Monte Carlo
▶ Dynamic model of firm investment and production (ACF)

▶ Two inputs capital k and labor l
▶ Intermediate inputs, m, subject to measurement error
▶ Tweak: reduce optimization error in l from 10% to 5%

▶ Estimators
▶ ACF estimator
▶ CUE

Table 1: Bias of simulated estimates (with standard errors). Measurement error in terms of
additional % variance of m.

ACF CUE
Meas. βl βk βl βk

0.0 −0.005 (0.038) +0.005 (0.041) −0.001 (0.023) 0.000 (0.007)
0.1 −0.500 (0.300) −0.301 (0.299) +0.038 (0.068) −0.035 (0.070)
0.2 −0.445 (0.985) −0.493 (0.983) −0.461 (0.346) −0.300 (0.300)
0.5 — — −0.532 (1.014) −0.436 (0.968)

17 / 25



Monte Carlo Estimates of PF Parameters

1000 replications. ACF in blue. CUE in red. Empirical densities: solid. Normal pdf: dotted.
Panels ordered left to right for larger measurement-error magnitudes.

▶ Measurement error ↑: stronger bias and non-normality
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Monte Carlo: Inference on PF Parameters

Table 2: Rejection frequencies at 5% nominal level

Meas. Joint test (non-robust)1 Joint test (robust)2 BS joint normality3

0.0 0.064 0.060 0.057
0.1 0.059 0.048 0.068
0.2 0.075 0.062 0.167
0.5 0.128 0.050 0.431

Based on 1000 replications. 1Wald. 2AR-GMM. 3Doornik and Hansen (2008).

▶ Measurement error ↑:
▶ Wald over-rejects
▶ AR-GMM keeps size
▶ BS normality rejections ↑
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Data & empirical setting (Chile & U.S.)

▶ Replicate Raval (2023) and apply CUE estimator and identification-robust
methods

▶ Chile (ENIA, plant-level)
▶ Fabricated metal products (ISIC 381)
▶ years 1979–1996
▶ plant-year obs. ≈ 4,000
▶ Materials: plant-reported intermediate consumption (high precision)

▶ U.S. (Compustat, firm-level)
▶ Manufacturing (mostly durables incl. metal products; NAICS 33)
▶ years 1970–2010
▶ firm-year obs. ≈ 8,000
▶ Materials: proxy via COGS− XLR; mixes labor/overhead (lower precision)

▶ Model & estimators.
▶ Cobb–Douglas in k, l ,m
▶ Control function: third-order polynomial in k , l ,m
▶ Estimation: ACF baseline + CUE
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ENIA, Chile (ISIC 381)

Table 3: Production function estimates (Chile, ISIC 381)

Estimates 95% CI BS Normality3

Parameter ACF CUE Nonrobust1 Robust2 p3

βk 0.064 0.047 [0.014, 0.080] [0.003, 0.087] 0.0
βl 0.122 0.053 [−0.090, 0.195] [−0.083, 0.185] 0.0
βm 0.875 0.956 [0.834, 1.078] [0.848, 1.072] 0.0

Returns to scale 1.060 1.060 — —

1Wald. 2Subset AR-GMM. 3Shapiro–Wilk Normality test.

▶ ACF and CUE estimates in ballpark

▶ Non-robust and robust CI similar and rel. tight

▶ Normality is rejected still
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Compustat, U.S. (NAICS 33)

Table 4: Production function estimates (U.S., NAICS 33)

Estimates 95% CI BS Normality

Parameter ACF CUE Nonrobust1 Robust2 p3

βk 0.422 0.187 [−0.660, 1.034] [−0.153, 0.507] 0.0
βl 0.411 0.333 [−1.135, 1.801] (−∞, 0.787] 0.0
βm 0.237 0.219 [0.106, 0.332] [0.052, 0.332] 0.0

Returns to scale 1.070 0.739 — —

1Wald. 2Subset AR-GMM. 3Shapiro–Wilk Normality test.

▶ CUE aligns less with ACF

▶ robust CIs are large, unbounded for βl (weak ID)

▶ Normality again rejected
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Conclusion

Findings

▶ Proxies with poor explanatory power (weak proxies) are source of weak
identification

▶ Monte Carlo shows potential large imprecision and non-normality in case of weak
proxies

▶ Robust methods ensure valid inference

Outlook

▶ Kitchen-sink approach for proxy

▶ Pretest that does not rely on BS (Andrews, 2018)

▶ More powerful robust inference (Kleibergen, 2005; Moreira, 2003)

▶ Other empirical applications
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